Topic 7C - Reaction Mechanisms

Mechanisms of Chemical Reactions

Elementary Reaction Steps

Sum must equal stoichiometric reaction

Reaction intermediates

Rate-determining step (RDS)

Reaction Molecularity

Uni -

Bi -

Ter -

Reaction order and rate law gives molecularity of RDS

Reaction Mechanism and Equilibrium Constant

At equilibrium, <u>all</u> elementary steps of a reaction's mechanism must be at equilibrium, and for <u>each</u> step:

$$\mathbf{K_i} = \frac{\mathbf{k_i}}{\mathbf{k_{-i}}}$$

That is, the equilibrium constant is the ratio of the rate constants of the forward and reverse reactions. This is the principle of detailed balance or Microscopic Reversibility.

Topic 7C - Reaction Mechanisms

so that

$$K = K_1 \cdot K_2 \cdot K_3 \cdot ... = \frac{k_1 k_2 k_3 ...}{k_{-1} k_{-2} k_{-3} ...}$$

For the following reaction, for example,

$$2 \text{ NO} + 2 \text{ H}_2 \neq \text{ N}_2 + 2 \text{ H}_2\text{O}$$

the mechanism is:

$$\begin{aligned} &\mathsf{NO} + \mathsf{NO} \xleftarrow[k_{-1}]{} & \xrightarrow{k_1} \mathsf{N_2O_2} \\ &\mathsf{N_2O_2} + \mathsf{H_2} \xleftarrow[k_{-2}]{} & \xrightarrow{k_2} \mathsf{N_2O} + \mathsf{H_2O} \\ &\mathsf{N_2O} + \mathsf{H_2} \xleftarrow[k_{-3}]{} & \xrightarrow{k_3} \mathsf{N_2} + \mathsf{H_2O} \end{aligned}$$

At equilibrium, the rate (not rate constant) of each elementary step in the forward direction equals the rate in the reverse direction. Thus,

$$k_1 [NO]^2 = k_{-1} [N_2O_2]$$
 $k_2 [N_2O_2] [H_2] = k_{-2} [N_2O] [H_2O]$
 $k_3 [N_2O] [H_2] = k_{-3} [N_2] [H_2O]$

The equilibrium constant, K_i, for each step is thus the ratio of the rate constants for the forward and reverse reactions:

$$K_{1} = \frac{[N_{2}O_{2}]}{[NO]^{2}} = \frac{k_{1}}{k_{-1}}$$

$$K_{2} = \frac{[N_{2}O][H_{2}O]}{[N_{2}O_{2}][H_{2}]} = \frac{k_{2}}{k_{-2}}$$

$$K_{3} = \frac{[N_{2}][H_{2}O]}{[N_{2}O][H_{2}]} = \frac{k_{3}}{k_{-3}}$$

The overall equilibrium constant is the product of the equilibrium constants for all steps:

$$K = K_{1}K_{2}K_{3} = \frac{k_{1}k_{2}k_{3}}{k_{-1}k_{-2}k_{-3}}$$

$$= \frac{[N_{2}O_{2}][N_{2}O][H_{2}O][N_{2}][H_{2}O]}{[NO]^{2}[N_{2}O_{2}][H_{2}][N_{2}O][H_{2}]}$$

$$= \frac{[N_{2}][H_{2}O]^{2}}{[NO]^{2}[H_{2}]^{2}}$$

TABLE 15.7 Examples of Elementary Steps and Corresponding Rate Laws

Elementary Step	Molecularity	Rate Law
$A \longrightarrow products$	<i>Uni</i> molecular	Rate = $k[A]$
$A + A \longrightarrow products$	Bimolecular	Rate = $k[A]^2$
$(2A \longrightarrow products)$		
$A + B \longrightarrow products$	Bimolecular	Rate = k[A][B]
$A + A + B \longrightarrow products$	Termolecular	$Rate = k[A]^2[B]$
$(2A + B \longrightarrow products)$		
$A + B + C \longrightarrow products$	Termolecular	Rate = k[A][B][C]

Reaction Orders vs. Mechanisms

If the first step is the RDS:

Rate =
$$k [NO_2] [F_2]$$

Mechanism:

$$NO_2 + F_2 \xrightarrow{k_1} NO_2F + F$$
 (slow)
 $NO_2 + F \xrightarrow{k_2} NO_2F$ (fast)

$$NO_2 + CO \rightarrow NO + CO_2$$

Rate = k $[NO_2]^2$

Mechanism:

$$NO_2 + NO_2 \longrightarrow NO + NO_3$$
 (slow)

$$NO_3 + CO \longrightarrow NO_2 + CO_2$$
 (fast)

If the first step is a rapid equilibrium that is followed by a slow step:

Rate =
$$k [H_2] [I_2]$$

Mechanism:

$$I_2 \leftarrow \xrightarrow{K} 2 I$$
 (rapid equilibrium)
 $H_2 + 2 I \xrightarrow{k'} 2 HI$ (slow)

For which the rate is given by:

Rate =
$$k' [H_2] [I]^2$$

But since

$$K = \frac{[I]^2}{[I_2]}$$
 then $[I]^2 = K[I_2]$

then

Rate =
$$k'K [H_2] [I_2] = k [H_2] [I_2]$$

Rate =
$$k [NO]^2 [O_2]$$

Mechanism:

$$\begin{aligned} &\text{NO} + \text{NO} \xleftarrow{\quad \quad \quad \quad \quad \quad } \overset{k_1}{\longrightarrow} \text{N}_2 \text{O}_2 & \text{(rapid equilibrium)} \\ &\text{N}_2 \text{O}_2 + \text{O}_2 \overset{k_2}{\longrightarrow} 2 \text{ NO}_2 & \text{(slow)} \end{aligned}$$

For which the rate is given by:

Rate =
$$k_2[N_2O_2][O_2]$$

But since

$$K_1 = \frac{[N_2O_2]}{[NO]^2} = \frac{k_1}{k_{-1}}$$
 then $[N_2O_2] = K_1[NO]^2$

then

Rate =
$$k_2 K_1 [NO]^2 [O_2] = k [NO]^2 [O_2]$$

For a multi-step mechanism with rapid equilibration:

Mechanism:

$$\begin{array}{c} \text{Cl}_2 \xleftarrow{\quad k_{-1}} & \xrightarrow{\quad k_1} & \text{2 Cl} & \text{(rapid equilibration)} \\ \text{Cl} + \text{CHCl}_3 & \xrightarrow{\quad k_2} & \text{HCl} + \text{CCl}_3 & \text{(slow)} \\ \text{CCl}_3 + \text{Cl} & \xrightarrow{\quad k_3} & \text{CCl}_4 & \text{(fast)} \end{array}$$

For which the rate is given by:

Rate =
$$k_2[CI][CHCI_3]$$

But since

$$k_1[Cl_2] = k_{-1}[Cl]^2$$
 and $[Cl] = \left(\frac{k_1}{k_{-1}}\right)^{1/2} [Cl_2]^{1/2}$

then

Rate =
$$k_2 \left(\frac{k_1}{k_{-1}}\right)^{1/2} [CI_2]^{1/2} [CHCI_3]$$

= $k[CI_2]^{1/2} [CHCI_3]$

Steady-State Approximation

For reactions that have no single slow step, can make the assumption that the concentration of an intermediate remains essentially constant during reaction:

The rate of formation of B is given by:

Rate =
$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = k_1[A]$$

The rate of disappearance of B is given by:

Rate =
$$k_{-1}[B] + k_{2}[B]$$

Thus, the net rate of change of [B] is:

$$\frac{d[B]}{dt} = k_1[A] - k_{-1}[B] - k_2[B]$$

Assume that the "Steady-State" concentration of B remains essentially constant during reaction, i.e., the <u>net</u> rate of change of [B] is zero:

$$\frac{\mathsf{d}[\mathsf{B}]}{\mathsf{d}t}=0$$

Topic 7C - Reaction Mechanisms

Then

$$\frac{d[B]}{dt} = 0 = k_1[A] - k_{-1}[B] - k_2[B]$$

Solving for [B] gives:

[B] =
$$\frac{k_1[A]}{k_{-1} + k_2}$$

The overall rate of reaction is thus:

Rate =
$$\frac{d[C]}{dt} = k_2[B] = \frac{k_1k_2[A]}{k_{-1} + k_2}$$

If $k_2 >> k_{-1}$ (i.e., second step is fast), then

Rate
$$\approx k_1[A]$$

If $k_2 \ll k_1$ (i.e., second step is slow), then

Rate
$$\approx \frac{\mathbf{k_1}}{\mathbf{k_{-1}}} \mathbf{k_2} [\mathbf{A}] = \mathbf{K_1} \mathbf{k_2} [\mathbf{A}]$$

FIGURE 27.1

Concentration profiles for the consecutive reaction scheme $A \stackrel{k_1}{\Rightarrow} I \stackrel{k_2}{\Rightarrow} P$ with initial concentrations $[A] = [A]_0$, and $[I]_0 = [P]_0 = 0$. (a) $k_1 = 10 \, k_2$: The concentration of I rises and then decays, changing significantly during the course of the reaction; (b) $k_2 = 10 \, k_1$: The concentration of I rapidly builds up to a constant, but negligible, concentration that persists for a large extent of the reaction. In this case, the steady-state approximation can be applied to [I].